
J. Fluid Mech. (2002), vol. 462, pp. 185–207. c© 2002 Cambridge University Press

DOI: 10.1017/S0022112002008601 Printed in the United Kingdom

185

The influence of geometry on inviscid
decay rates in haemodynamic flows

By M. G. B L Y T H AND A. J. M E S T E L
Mathematics Department, Imperial College, 180 Queen’s Gate, London SW7 2BZ, UK

(Received 18 December 2000 and in revised form 27 September 2001)

Fully developed flows are often used to describe fluid motion in complex geometrical
systems, including the human macrocirculation. In fact they may frequently be quite
inappropriate even for geometrically simple pipes, owing to the unfeasibly large
viscous entry lengths required. Inviscid adjustment to changes in geometry, however,
occurs on the lengthscale of the pipe diameter. Inviscid idealizations are therefore
more likely to apply in relatively short arterial sections. We aim to quantify the
distances involved by calculating the rates of spatial decay for a general disturbance
superimposed on an idealized base flow. Both irrotational and rotational base flows
are examined, although in the latter case there can exist non-decaying inertial waves,
so that an arbitrary inflow need not attain an inviscid state independent of the
downstream coordinate. In the rotational case, we therefore restrict attention to those
flows which settle down to perturbations of such a state, whereas the potential flows
can be regarded as developing from an arbitrary input.

We focus on the last surviving mode of decay in simple uniform pipe geometries,
in particular a straight pipe, part of a torus, and a helical pipe. In this way we are
able to assess the effects of curvature and torsion on the inviscid entry lengths.

Principally, it is shown that the rate of decay is fastest in a straight pipe and slowest
in a toroidal pipe, with that in a helical pipe somewhere in between. Core vorticity
tends to reduce the decay rate. If an idealized flow occurs in a geometrically simple
arterial portion, our results determine its domain of validity.

1. Introduction
There is a wide variety of theoretical pipe flow applications in engineering (see, for

example, the review article by Berger, Talbot & Yao 1983). Such analytical studies
can also be helpful in the understanding of physiological flows (Ku 1997). In either
case, the competition of many different factors increases the difficulty of producing
a tractable mathematical model. In the human body, for example, flow prediction in
the larger blood vessels is complicated by their elaborate geometry. This is frequently
non-planar, and involves a large number of bends and bifurcations. The geometry
may even vary with time, as for the extra-myocardial coronary arteries (Lynch, Waters
& Pedley 1996). In addition, the driving pressure gradient, though essentially periodic,
has a non-trivial time-dependence.

Fully developed idealized models are commonly used to describe the flow in such
situations. For example, steady Dean (1927, 1928) flow has been used to model fluid
motion at some distance from the heart, while flow in helical pipes (Zabielski & Mestel
1998a, b) has been studied with reference to the aortic arch. In practice, real flows may
have insufficient space to adjust to the asymptotic state. While some flows require an
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entry length of order the Reynolds number, the rapidly oscillating Womersley-like
flows require a much shorter distance. Adjustment of inviscid cores likewise occurs
over a length of order the pipe diameter. In this paper we address the question of
how rapidly these states are reached. For example, if a curved pipe straightens out, it
would be of practical interest to know over what lengthscale the residual swirl from
the final bend dies out. This question is of fundamental importance to the suitability
of using simplified models to describe real flows. Accurate measures of entry and exit
lengths also improve the efficiency of computational studies.

We investigate both rotational and irrotational inviscid flows. Initially we argue
that, given appropriate entry and exit conditions, rapidly oscillating Womersley-type
flows in pipes of quite complex geometry may be considered to be potential, with
viscous effects confined to thin Stokes layers at the walls. The entry problem for
potential flows can be formulated for an arbitrary input, but we concentrate on the
final decay before the flow settles to its inviscid downstream limit. Subsequently we
discuss the evolution of inviscid flows with a rotational core, again assuming that
at sufficiently high Reynolds numbers viscous effects are unimportant away from
the walls. Such flows might be applicable further along the arterial tree where the
fluctuating component of the pressure has weakened. With vorticity present there is the
possibility of inertial waves which do not decay with downstream distance. Such waves
have been found by, for example, Sobey (1976) in a pipe of slowly varying elliptical
cross-section, and Pedley & Stephanoff (1985) in a channel with a time-dependent
indentation. Thus, although a contained Euler flow with a general rotational input
need not evolve to a downstream-invariant state, we focus our attention on those
flows which are observed to do so, and analyse the rates at which this equilibration
takes place. From a haemodynamic standpoint, we argue that should a cross-sectional
scan indicate a flow almost consistent with downpipe invariance, then our results can
be used to estimate the domain of validity of an idealized model. In this spirit we
examine inviscid flows in three characteristic types of geometry: a straight pipe;
a section of a torus; and a helical pipe. These allow us to quantify the effects of
curvature and torsion on the decay rate.

For potential flow, separable eigenfunctions with exponential downpipe behaviour
may be found for the straight pipe and torus section. Analysis for the helical pipe
is hampered by the lack of an orthogonal coordinate system, and progress is made
by numerical means. In all cases we consider pipes with a rectangular or circular
cross-section, the latter having the greater physiological relevance.

Rotational flows are discussed in the latter half of the paper. Decaying disturbances
to the steady-state unidirectional flow in a straight pipe are examined, both with and
without wall slip. In the latter, corresponding to the fully developed viscous state,
unsteady modes are found to be important. Inviscid decay in curved sections is
also studied. To this end, flow at high Dean number is adopted as the base state,
and the evolution of small perturbations analysed. Some previous authors have
studied the steady high-Dean-number entry problem analytically (Singh 1974; Yao
& Berger 1975; Stewartson, Cebeci & Chang 1980) and experimentally (Agrawal,
Talbot & Gong 1978). In our work small curvature is assumed for pipes with circular
cross-sections, while pipes of arbitrary, but uniform, curvature with rectangular cross-
sections are also considered. For the former case at least, the background flow is
itself non-trivial and the full asymptotic problem, incorporating the viscous boundary
layer at the wall, is still not satisfactorily resolved. However, numerical calculations,
for example by Collins & Dennis (1975), and theoretical work, by Smith (1976a)
for triangular and rectangular cross-sections, and more recently by Dennis & Riley
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(1991), have provided mounting evidence that the dual, counter-rotating vortex pair
representation, with the boundary layer everywhere attached and no eruption into
the core, is valid at large finite Dean number and therefore we adopt this as our base
flow.

Some of this work is related to spatial stability problems. Here, we assume implicitly
that the underlying flows are stable, and seek the perturbation which decays slowest.
A general discussion of spatially developing flows is given by Huerre & Monkewitz
(1990).

2. Preliminaries
2.1. Decay rates

Flow in a tube with downpipe symmetry, for example a torus, can reasonably be
expected to achieve a corresponding symmetry given a sufficient entry length. The
distance required for viscous effects to act is long, but in some circumstances an
inviscid symmetric state can be achieved rapidly, which is the subject of the current
study. Potential flows are considered in § 3, while vorticity effects are introduced
in § 4.

The potential problem is formulated as follows. Given a unit symmetry direction,
denoted ŝ, we choose our coordinate system, denoted (x1, x2, x3), so that ŝ is perpen-
dicular to the (x1, x2)-plane. This coordinate system is not necessarily orthogonal. A
pipe, denoted Ω, is generated by continuously translating a closed boundary curve
∂Ωc : F(x1, x2) = 0, and its interior Ωc, in the direction of ŝ. Solutions of Laplace’s
equation, ∇2V = 0, are then sought in Ω subject to tangential flow boundary condi-
tions, n · ∇V = 0, on ∂Ωc. The vector n is normal to the boundary. The solutions are
assumed to take the generic form

V = V0(x1, x2, x3) +

∞∑
n=1

Vn(x1, x2) e−knx3 , (2.1)

for constant eigenvalues Re{kn} > 0, and some appropriately chosen third coordinate
x3. In the downstream limit, x3 →∞, the flow u0 = ∇V0 satisfies ŝ ·∇u0 = 0, and so the
potential V0 is at most linear in x3. Determining the smallest kn establishes the slowest
decay rate at which this developed flow u0 is approached. Decay rates in rotational
flows are treated in a similar manner, the Euler equations being linearized about the
developed state. In that case, some of the modes can be neutral, with Re{kn} = 0.

Since we are mostly dealing with homogeneous Neumann problems, we will
throughout ignore the zeroth trivial eigenvalue and associated eigenfunction and
use ‘first’ to mean the first non-zero eigenvalue. In the same way, we will use the
term ‘smallest’ in connection with eigenvalues to mean one with the smallest strictly
positive real part. Also, we will refer to a toroidal or helical pipe with a circular or
rectangular cross-section as a circular or rectangular torus or helix respectively. We
will frequently make reference to the axes (x, y, z) of the Cartesian frame, and cylindri-
cal polars (r, θ, z), with respective unit vectors (er, eθ, ez). The cylindrical coordinates
are shown with three typical pipe geometries in figure 1.

2.2. Motivation for studying potential flow

Consider the motion of a fluid of density ρ and kinematic viscosity ν inside a three-
dimensional pipe of typical width a, driven by a pressure gradient oscillating at
frequency ω. Let the fluid velocity at the inlet have typical magnitude U and the



188 M. G. Blyth and A. J. Mestel

z

r

z

r

θ

θ

z

Figure 1. The three pipe geometries in cylindrical coordinates (r, θ, z): a straight pipe, a section
of a torus of uniform curvature, and a helical pipe of constant curvature and pitch. Rectangular
cross-sections are also considered.

entrance flow be irrotational. If we divide velocities by U, the pressure by ρU2, and
time by 1/ω, we may write the unsteady Navier–Stokes equations as

α−2ut + u · ∇u = −∇p+ R−1∇2u, ∇ · u = 0, (2.2)

where α2 is defined to be U/(ωa) = Rν/(ωa2), and R = Ua/ν is the Reynolds number
for the flow. When α � min{1, R1/2}, a simple structure occurs with an irrotational
core and Stokes layers.

In the mammalian macrocirculation, the driving pressure gradient has a relatively
small steady component, while the fluctuating and mean velocities are comparable
(McDonald 1974). In (2.2), writing ∇p = ∇p0(x, t) + ∇p1(x), where |∇p0| � |∇p1|,
and u = u0(x, t) + u1(x), yields at leading order u0t = −∇p0. The unsteady part
of the core flow is therefore potential. Furthermore, this flow is established over a
distance of O(U/ω) � aR (Pedley 1980). The fully developed steady core flow is
not irrotational, as viscous effects, including steady streaming from the Stokes layers,
eventually become important. However, if the entry flow is irrotational, then it will
remain so on a downpipe lengthscale small compared to R. Denoting a time-average
by an overline, the steady potential flow requires that

p1 + 1
2
u2

1 + 1
2
u2

0 = const.

Upon averaging this relation over a pipe cross-section, it can be seen that a drop
in mean pressure can result not only because of viscous resistance, but also from
growing complexity of the pipe geometry. When a straight artery bends, the potential
velocity becomes non-uniform, so that its mean-square increases and thus the mean
pressure decreases.

Potential flows are thus crucial in the high-frequency Womersley limit α � 1, cer-
tainly for the oscillatory flow, and possibly even for the steady component. However,
this limit is not attained in the larger human arteries such as the aorta, as the non-
linear term is important. Nevertheless, for general α an initially irrotational core flow
remains irrotational until a wall layer separates or diffuses. For non-straight pipes
centrifugal effects in the boundary layers generate secondary cross-pipe flows. For
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a uniform bend, in a pipe of radius a and radius of curvature b say, these layers
separate at the inner wall a distance 3.98a(b/(2a))1/2 downstream of the inlet (Riley
1998; see also Lam 1988). In the human aortic arch the ratio a/b is approximately 0.4
(Chandran 1993), suggesting that the flow is potential for the first 102◦ of the bend.
Analyses of other viscous entry flow problems are given by Pedley (1980). Here we
concentrate on the leading-order potential flow and in particular investigate its form
for differing pipe geometries.

3. Decay rates in potential flow
3.1. Straight pipes

3.1.1. Rectangular

For a straight pipe aligned with the z-axis, we seek solutions which are exponentially
decaying in z. Therefore in § 2.1 we have ŝ = ez and x3 = z. For a rectangular pipe
with cross-section x = 0, πa0 and y = 0, πb0, we find

Vn = cos(lx/a0) cos(my/b0) exp(−knz), where k2
n = l2/a2

0 + m2/b2
0,

for integer l, m. The first eigenvalue is therefore given by k1 = 1/max{a0, b0}. If a0 is
equal to b0 this first eigenvalue is degenerate, since we could take (l, m) to be either
(1, 0) or (0, 1). From now on, we shall suppress the suffices on Vn and kn, referring
always to the first eigenmode.

3.1.2. Circular

For a circular pipe at r = 1, the first eigenvalue is also degenerate, with eigenfunc-
tion either V = J1(kr) cos θ or V = J1(kr) sin θ, where J1 is the Bessel function of the
first kind. The eigenvalues k satisfy J ′1(k) = 0, of which the smallest is k ' 1.841.

For both circular and rectangular shapes the last eigenfunction to decay has a
‘+/−’ structure, with some dividing line on which the downpipe velocity vanishes.

3.2. Toroidal pipes

3.2.1. Rectangular

For a toroidal pipe of rectangular cross-section, it is natural to use cylindrical polar
coordinates. Let r = b± a, z = 0, z0 define the pipe’s cross-section. We are concerned
with a section of the torus over which perturbations decay exponentially in θ. Hence
periodicity in θ is not imposed. So, with reference to § 2.1, we now take ŝ = eθ and
x3 = θ. For positive integer n the eigenfunction for this rectangular torus is

V = exp(−κθ) cos(nγz) Re{Jiκ(inγr) + CJ−iκ(inγr)}, (3.1)

where γ = π/z0, and C is an unknown real constant. The Neumann boundary
conditions at r = b± a determine κ and C for a given n > 0. When n = 0 we find

π

κ
= log

(
b+ a

b− a
)
. (3.2)

In this case the eigenvalue is not degenerate. Depending on the pipe aspect ratio the
smallest eigenvalue is determined either by (3.1) or (3.2). The eigenfunction has a
similar +/− structure to those in § 3.1.

3.2.2. Circular

The calculation for the circle is more involved. In order to describe this flow it is
most convenient to utilize toroidal coordinates (µ, η, θ) (see, for example, Morse &
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Feschbach 1953). These are defined by rotating bipolar coordinates about the z-axis.
Thus

z = a sin η/hτ, x = a sinh µ cos θ/hτ, y = a sinh µ sin θ/hτ,

where hτ = cosh µ− cos η. As above 0 6 θ < 2π measures the angle around the z-axis.
In a fixed θ-plane, with µ = µ0 held constant, 0 6 η < 2π parameterize a family of
circles of radius a/ sinh µ0 and centre (x2 + y2)1/2 = a coth µ0. The range µ0 6 µ < ∞
corresponds to the interior of the torus with µ = µ0 as its boundary.

We seek solutions decaying azimuthally with θ. In these coordinates the Laplacian

is separable. Writing V = h
1/2
τ F(µ, τ, θ), it becomes

1

sinh µ

∂

∂µ

(
sinh µ

∂F

∂µ

)
+
∂2F

∂η2
+

1

sinh2 µ

∂2F

∂θ2
+ 1

4
F = 0.

The solution may be written as

V = h1/2
τ exp(−κθ)

∞∑
m=0

αm cos(mη)Qiκm−1/2(cosh µ), (3.3)

where the αm are constants and Qiκm−1/2 is the associated Legendre function of the

second kind. A Dirichlet boundary condition would pose a straightforward problem
for κ. However, since the square-root hτ factor is a function of µ, the requirement that
Vµ = 0 produces a mixed boundary condition on the toroidal surface. In fact, writing
ξ = cosh µ, we ultimately require that

αmQ
iκ
m−1/2 − d

dξ
(2αmξQ

iκ
m−1/2 + αm−1Q

iκ
m−3/2 − αm+1Q

iκ
m+1/2) = 0 (3.4)

on ξ = ξ0 for all m. Accordingly all modes m contribute to a single eigenvalue κ. It
is important to note at this stage that exactly the same condition as (3.4) is produced
if we replace cos(mη) in (3.3) with sin(mη). So the eigenvalue κ is degenerate for a
circular torus of arbitrary curvature, unlike for the rectangular torus. There is no
obvious geometrical symmetry to explain this, but it is related to the manner in which
the Laplacian separates.

Truncating (3.3) at a value m = M, the condition (3.4) may be written as a matrix
equation A(κ)α = 0, where α is a column vector with mth entry αm. The determinant
of A has zeros which approach the eigenvalues κ as M → ∞. To determine precisely
where the matrix is singular we looked at the singular value decomposition of the
matrix. The existence of an eigenvalue was decided at a point κ where the ratio
of the smallest to the largest of the singular values was numerically zero. We took
the cross-sectional radius a/ sinh µ0 = 1, and so the radius of curvature b = cosh µ0.
The results are shown in figure 2. As the radius of curvature b increases the curve
asymptotes to 1.84, since this is the smallest eigenvalue for the straight pipe with unit
radius (see above). In fact we find that κ/b ∼ 1.84− 0.72/b2 as b tends to infinity.

Finally we note that the eigenfunctions have a similar +/− structure to those in
§ 3.1.

3.3. Helical pipes

In order to assess the effect of torsion on decay rate, we examine potential flow in
a helical pipe. Such a geometry has recently been considered by Zabielski & Mestel
(1998a, b) for both steady and unsteady flows. The former paper will henceforth be
referred to as ZM. In both cases these authors were interested in flows which did
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Figure 2. Variation of κ/b with radius of curvature b = cosh(µ0) for a circular torus of radius
a/ sinh µ0 = 1. As b→∞, κ/b→ 1.84 as expected.

not vary along the pipe in the direction of helical symmetry H , defined below. The
approach to such a helically symmetric potential solution is the subject of the current
section.

Most of the details of the coordinate system and orthogonal helical vector base are
given in ZM. In the interest of clarity, we will repeat some of these here. A left-handed
helix is parameterized in a Cartesian (x, y, z) frame as (x, y, z) = (r cos(εt),−r sin(εt), t)
for constant pitch ε > 0. In terms of cylindrical coordinates (r, θ, z), a base of
orthogonal unit vectors is defined by

er = er, eφ = hH × er = (eθ + εrez)/h, eH = hH = (−εreθ + ez)/h, (3.5)

where h(r) = (1 + ε2r2)1/2. Then the helix of radius r = b has curvature ε2b/h2
b, where

hb = h(b), and torsion −ε/h2
b. A scalar function f is defined to be helically symmetric

when H · ∇f = 0. The two limits limε→0 eH = ez and limε→∞ eH = −eθ correspond to
two-dimensionality (straight pipe) and axisymmetry (torus) respectively.

The fact that ∇ × (heφ/r) = 0 enables us to define a new coordinate φ = θ + εz.
However, it is impossible to define a third orthogonal coordinate (see ZM). This is
not important when dealing with helical symmetry, but it is somewhat inconvenient
if, as here, we wish to allow variation in the H-direction.

3.3.1. Rectangular helix

It is most straightforward to begin by considering the rectangular curve r = b± a,
φ = 0, φ0. When translated continuously in the H-direction, this defines a helical
pipe. For non-zero torsion it can be viewed as having a rectangular cross-section in
physical space (at θ = 0 for example). When ε = 0 it defines a straight pipe whose
cross-section is a truncated wedge. At ε = ∞ it is a rectangular torus.

We seek solutions which decay exponentially along the pipe. The lack of a third
orthogonal coordinate obscures what we mean by ‘along’ here, so although we set
ŝ = hH in § 2.1, it is not yet clear what to take for x3. We wish to solve Laplace’s
equation for V , such that hH · ∇V = β(r, φ)V , for some function β. To satisfy this
requirement, we may choose β = k/h (so x3 = z or x3 = −θ/ε), and write

V = e−kzf(r, φ) = eκθg(r, φ), (3.6)
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Figure 3. Numerical solution for a pipe with φ = 1.0, r = 1 ± 0.5. Plots are shown for the first
and second eigenvalues. (a) Re(k) against ε, (b) Re(k) and Im(k) varying with ε. The points ×
indicate where ε = 0. The straight dotted line in (a) has gradient 2.86 (see text). The two bifurcation
points in (a) correspond to where the solution changes from real to complex, and complex to real
respectively in (b).

where k, κ(= k/ε) are both constants. The helically symmetric functions f and g are
related by g = exp{−κφ}f. In these coordinates, Laplace’s equation becomes

frr + fr/r + h2fφφ/r
2 − 2εkfφ + k2f = 0, (3.7)

with boundary conditions fr = 0 at r = b± a, and h2fφ/r
2− εkf = 0 at φ = 0, φ0. As

this problem is not self-adjoint k and f may be complex, in which case the real part is
implicit in (3.6). It is solved numerically using centred differences for the derivatives.
The resulting system is written in the matrix form Af = 0, where f is the vector
of f values at each grid point, and A has entries which are at most quadratic in k.
Newton iteration is used based on the method of Lancaster (1966, p. 78). A (15× 15)
grid is sufficient to compute the eigenvalues with a relative accuracy of 10−3. The
eigenvalues were tracked as ε increases from 0. In figure 3 we can see the behaviour
of the complex first and second eigenvalues with varying ε.

At ε = 0 we have a straight pipe, whose cross-section is the truncated wedge
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Figure 4. Merging of two roots for straight truncated wedge pipe. a = 0.5. The solid line is
n = 0, dashed is n = 1. Note as b → ∞, the solid line tends to π and the dashed line decreases
monotonically.

r ∈ [0.5, 1.5], θ ∈ [0, 1]. We find the first eigenvalue k = 2.886, and the second
k = 3.271. Thereafter as ε is increased these two eigenvalues eventually coalesce to
form a complex-conjugate pair in the approximate range 0.208 < ε < 0.753, whereafter
they rejoin and subsequently diverge as separate real values.

It is informative to monitor the effect of varying b on the first bifurcation point
in figure 3(a). We find that when it is decreased from its current value b = 1,
the bifurcation point moves closer to the Re(k)-axis, eventually touching it before
bouncing back. This suggests a degeneracy in the first eigenvalue for the straight
truncated wedge pipe. Such a pipe has eigenfunction

V = exp(−kz) cos(nπθ){Jnπ(kr) + CJ−nπ(kr)}, (3.8)

for integer n, and constant C . Fixing the width 2a = 1, we find that for most of the
range 0 6 b < ∞, the smallest eigenvalue for this straight pipe corresponds to n = 1.
However, as can be seen in figure 4, for a small range of b, n = 0 contributes the
smallest k, with degeneracy of the eigenvalue occurring at b ' 0.8.

The iteration scheme converges poorly outside the range given in figure 3, when the
formulation using g(r, φ) in (3.6) should be preferred, as in the next section. Given the
form of (3.6), we anticipate that k ∝ ε for large ε. The limiting toroidal cross-section
has z ∈ [0, 1/ε], which shrinks as ε grows. When n = 1 in (3.1), k increases with z0.
However, when n = 0, k is independent of z0, with the smallest value given by taking
κ = k/ε in (3.2). In the toroidal limit therefore this becomes the smallest overall and
so we expect that k ∼ 2.8596 ε as ε → ∞ in figure 3(a). The agreement seems to be
good.

3.3.2. Circular helix

We now focus attention on a helical pipe with circular cross-section. This is the
more interesting of the two cases from a physiological perspective. The coordinate
system to be used is that of ZM. Most of the background details are given in the
Appendix.

Taking the centreline of the circular pipe to be the helix with tangent vector
Hb = H |r=b, we fix local polar coordinates (ρ, η) with origin on the centreline in a



194 M. G. Blyth and A. J. Mestel

plane normal to Hb so that the pipe surface is ρ = 1. Putting ŝ = hbHb, x3 = z in
§ 2.1, we seek solutions to ∇2V = 0 in the form V = Re{exp(kz)f(ρ, η)}. This leads to
the following equation for f(ρ, η):

fρρ +
h2

r2J2
fηη + Sfρ + Tfη − 2εk(ρφfρ + ηφfη) + k2f = 0, (3.9)

with boundary condition eρ · ∇f = 0 on the pipe surface. Thus

fρ − εkρφf = 0 on ρ = 1. (3.10)

The form of S , T and the Jacobian J are given in the Appendix. Note that in the
limit ε → 0, h2/(r2J2) → 1/ρ2, S → 1/ρ, T → 0, and both ρφ, ηφ ∼ O(1), so the
problem for the straight pipe is recovered.

Alternatively we may seek solutions in the form V = Re{exp(κθ)g(ρ, η)}, where κ =
k/ε. This produces an equation and boundary condition which may be transformed to
(3.9) with (3.10) by writing g = exp(−κφ)f(ρ, η). We will refer to these two equivalent
formulations as kz and κθ respectively.

Unlike the rectangular helix considered previously, this pipe retains its circular
cross-section for all values of ε. Therefore, at ε = 0 we have a straight circular pipe
with ez tangent to its centreline, and when ε = ∞ we have a circular torus with et as
its centreline tangent.

The numerical method of solution is the same as for the rectangle. Equation (3.9),
along with the boundary condition (3.10) were approximated with centred differences,
and the whole system was written as a matrix whose entries are at most quadratic
in k. Periodicity in η was imposed in an obvious manner. The Lancaster iteration
scheme was then employed at each value of ε to converge to the required solution
branch. Standard methods were used to deal with the coordinate singularity at ρ = 0.

The kz formulation becomes inaccurate as εb becomes large, when the κθ ar-
rangement is more appropriate. The two formulations should give k = κ at ε = 1.
In figure 5(a) we plot the computed decay rates for varying ε (fixed b = 1.5). The
numerical agreement between the two formulations (indicated by the curved dotted
line) is tolerable.

Although the imaginary parts have not been plotted in figure 5(a), the eigenvalue
becomes complex as soon as ε is made non-zero. It was remarked in § 3.1.2 that
the first eigenvalue for the straight circular pipe is degenerate. Thus it appears as a
repeated root when ε = 0, which subsequently divides into a complex-conjugate pair
as soon as the torsion is increased. A straight square pipe is also degenerate in the
first eigenvalue and so we would expect the picture to be qualitatively similar. The
(r, φ) ‘rectangular’ helix considered above does not immediately split into a conjugate
pair as the straight pipe is not square at ε = 0.

That the first eigenvalue should become complex immediately in the current circular
case is confirmed by a perturbation analysis about ε = 0. The local small-ε expansion
for the first eigenvalue is k = 1.841 ± iε + O(ε2). Numerical computation yields
k = 1.841± 0.0099i at ε = 0.01.

In the limit ε → ∞, corresponding to a circular torus, the governing equation
becomes self-adjoint and so all the eigenvalues are real, and the conjugate roots
coalesce. Thus, as for the straight pipe, we expect the first eigenvalue to be degenerate.
This is far less clear for the torus than for the straight pipe where it is obvious from
symmetry. That the first eigenvalue for the circular torus is degenerate was noted in
§ 3.2.2.

The most accurate numerical results for both formulations of the problem came
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Figure 5. Numerical results for the circular helix of radius unity using a (30 × 40) grid. Only the
first eigenvalue is plotted. (a) b = 1.5: Re(k), Re(κ) (two solid lines) for the kz, κθ formulations
respectively, against ε. The bottom line (iii) is Re(k)/hb (hb is the centreline arclength). The curved
dotted line (ii) is k/ε and should, in theory, agree with κ. The straight dotted line (i) is the expected
limiting torus asymptote for k, of gradient 2.19 (which may be read off the curve in figure 2).
(b) Re(k/hb) (solid line) and Im(k/hb) (dotted line) against ε for εb = 1.5 (fixed).

from where εb = O(1). In order to show the effect of changing both b and ε
simultaneously therefore, in figure 5(b) we plot Re(k/hb) and Im(k/hb) against ε with
εb fixed. Note that the arclength along the helix centreline hb remains constant in
this instance, and that for physical reasons we must take b > 1. Once again ε = 0
corresponds to a straight pipe. This can be seen by allowing ε→ 0 in (3.9) and (3.10)
with εb fixed, whereupon the equation for the straight pipe (with k replaced with
k/hb) with boundary condition fρ(1) = 0 is retrieved.

One final point on the numerical method employed here should be made. Although
the circular torus is degenerate, and so the first eigenvalue should appear as a repeated
root, we found that truncation errors caused it to bifurcate into a pair of roots whose
real parts are close together. Thus as ε is increased indefinitely in figure 5(a) the solid
curve does not tend directly towards the desired asymptotic value but rather splits in
two. We deem this to be an artifact of the discretization of the continuous system.
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Figure 6. Contours of ψ − kiz + α at z = 0 for the circular helix with ε = 0.1, b = 1.5.
The contours are equally spaced within the range [−π, π].

This slight numerical ‘splitting’ of the eigenvalue also occurs in figure 5(b) at ε = 0
and has been omitted from the graph.

3.4. Interpreting complex decay rates

The implications for the flow when k is complex are not immediately obvious. For
both the straight pipe and the torus, where k is real, we found that the downpipe
velocity associated with the critical eigenfunction is zero on a surface with the same
downpipe symmetry. The same is true for the helix as long as k is real. When k is
complex, however, we find that such a surface still exists but it twists along the pipe.

For the helix the downpipe velocity is given by

uH = hH · ∇V = |kf|Re{ei(ψ−kiz+α)} e−krz/h,

using the helical symmetry of f. Here we have written f = |f|eiψ and k = kr + iki =
|k|eiα. Thus uH is zero when ψ − kiz + α = (2n + 1)π/2. Figure 6 shows contours of
ψ− kiz+ α at a fixed value of z for the circular helix. It is clear that a curve exists on
which uH is zero. Furthermore this curve will ‘rotate’ as z varies. There is no simple
relation between this rotation rate and the helical pitch.

3.5. Summary of the irrotational results

In this section we have calculated decay rates for the approach to inviscid, irrotational
solutions in three distinct pipe geometries: a straight pipe, part of torus, and part of
a helix. Our aim was to quantify the entry lengths required to attain fully developed
potential solutions in these specific geometries, whilst providing generic results which
might be used to interpret more complex flow development in non-uniform twists
and bends. The following principal conclusions may now be stated regarding the
evolution of potential flows from an arbitrary inlet velocity:

(a) they are established most rapidly in a pipe which is perfectly straight;
(b) the introduction of curvature or non-planarity serves to increase the entry

length;
(c) the eigenfunctions of the final mode to decay have a characteristic +/− struc-

ture, which is spatially dependent in the case of the helical pipe.
As detailed in §2.2, potential cores are to be expected for rapidly oscillating

Womersley flows and for entry flows with an irrotational input. Even if the incoming
fluid has vorticity, however, it may adjust to the symmetric pipe geometry on a
lengthscale of order the pipe diameter, which can be determined in a similar manner
to above. Such problems are discussed in the next section.
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4. Decay rates in rotational flows
In this section we aim to investigate how the presence of vorticity in the symmetric

downstream state influences the rate at which it is approached. To this end we examine
small perturbations to flow in a straight pipe and in part of a torus. The helical pipe
will not be considered in this section. For the straight pipe, rotational profiles both
with and without slip at the wall are considered. In the torus we take steady Dean-like
flow as the background motion. Although in both geometries the effective Reynolds
number is large, we assume implicitly that the basic flows are stable, and seek the
mode with slowest spatial decay rate. We will sometimes encounter neutrally stable
inertial waves, but these are less important for our purpose than the decaying modes.
We are assuming that a flow is reached in a symmetric arterial portion which is almost
independent of the downstream coordinate. In practice, this knowledge would come
from MRI-imaging or some other scanning process. We then seek to estimate the
length of artery, and in particular the upstream distance, over which this idealized flow
can be expected to apply. The inertial wave perturbations do not grow in amplitude
upstream but the decaying modes clearly will, and limit the upstream distance over
which the observed solution is applicable. We thus obtain an estimate for the necessary
inviscid entry length for the establishment of such a flow. It does not follow that such
a flow will in fact occur if an artery exceeds this length, as an arbitrary input can give
rise to nonlinear, large-amplitude inertial waves. Examples of inviscid non-decaying
flows are discussed by Hawthorne (1955) and Sobey (1976). If the pipe section is too
short, however, there is certainly no reason to expect an idealized solution to apply
and the value of such approximations is questionable.

4.1. Straight pipe

Steady fully developed viscous flow in a straight circular pipe adopts the Poiseuille
profile. We consider a more general class of unidirectional Euler flows with the
possibility of slip at the wall and calculate the rates of decay of exponentially small
disturbances. The related problem of spatial stability of Poiseuille flow in a straight
circular pipe was investigated by Gill (1965), and numerically by Garg & Rouleau
(1972) for finite values of the Reynolds number and disturbance frequency.

We assume that the Reynolds number R is large and so viscous effects can be
expected to be confined to the walls, and the inviscid core to vary slowly on an
order-Reynolds-number downpipe lengthscale. We perturb this slowly developing
base profile by admitting a small perturbation and writing

u = u0(r)ez + exp(−kz)u1(r, θ), (4.1)

where the slow viscous evolution of the base flow u0 is neglected. We wish to solve for
k, u1, given u0. The disturbance equations governing u1, obtained by substituting (4.1)
into the Euler equations and linearizing, can be simplified to give a single relation for
the perturbation pressure p1(r, θ), namely

∇2p1 − 2
u0r

u0

p1r + k2p1 = 0, (4.2)

together with a wall condition to be discussed below and a regularity condition
at the origin. Note that if the base flow is a constant then (4.2) reduces to the
potential problem of § 3.1 and hence in this case the smallest k is 1.841 for the first
non-symmetric mode.

We consider two possibilities: either allowing u0 to have a slip velocity at the wall,
or enforcing the viscous no-slip condition there. First we examine a base flow with
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Figure 7. n = 1, k = kr+i ki. Variation of k (solid line is kr; dashed line is ki) with ω. Throughout the
imposed boundary condition was p′1(1) = 0. Note that in the limit ω → 0, this boundary condition
changes abruptly to p(1) = 0.

no slip at the walls. We take the Poiseuille profile u0 = 1− r2, even though in practice
this would usually require an order-Reynolds-number entry length. The denominator
in the second term of (4.2) has a zero at the wall, and the correct boundary condition
is p(1) = 0 (Smith 1976b). Then (4.2) admits the exact axisymmetric solution p =
J0(kr) + r2J2(kr), where Ji represents a Bessel function of the first kind. The smallest
axisymmetric eigenvalue is the first zero of J1(k) = 0, approximately 3.831, and this
can be shown to be the smallest overall (Blyth & Mestel 1999).

Now we permit slip at the wall and, by way of example, consider the base flow
u0 = 1− λr2, for some constant λ between zero and one. There is no longer a zero in
the denominator of the second term in (4.2), and in this case the correct wall condition
is p′(1) = 0, which corresponds to tangential flow at the wall. The eigenvalues k must
now be computed numerically. As λ→ 0, we recover the potential problem of § 3.1, for
which k = 1.841. As λ → 1−, the no-slip case is approached, although we emphasize
the change in the wall condition when λ = 1. We find that for λ < 1 the eigenvalue is
less than the value for the potential problem, and it approaches this value as λ→ 0.
Thus with slip at the wall, as the vorticity in the base flow increases we find that
the decay rate decreases from its irrotational value. In each case, the eigenfunction
has a +/− structure. However, with no wall slip as above, the inviscid perturbations
appeared paradoxically to decay much more quickly than either, and furthermore the
eigenfunction was axisymmetric.

This paradox results from the zero of u0 at the wall when λ = 1 and the resultant
change in boundary condition. The singularity in the Rayleigh equation (4.2) can also
be avoided by introducing a small time-dependence into the perturbation, writing

u = u0(r)ez + Re{exp(−kz − iωt+ inθ)un(r)},
for real non-zero ω and integer n, where u0 = (1− r2). The denominator in the second
term of (4.2) is then (u0 − iω/k), and the boundary condition p′(1) = 0 applies once
more. It is then found numerically that the first non-symmetric mode n = 1 provides
the eigenvalue k with the lowest real part. The variation of k with ω for n = 1 is
shown in figure 7.

It can be seen from figure 7 that, as the disturbance frequency ω approaches zero,
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Figure 8. Local polar coordinates (ρ, η) for the torus.

Re(k)→ 1+ and Im(k)→ 0 in agreement with Smith (1979). Smith stipulates that the
slowest decaying modes are obtained when, in our notation, ω � 1 with |k| = O(1).
In this case the core plays a passive role, with the value of k determined by the viscous
wall layer, and Smith demonstrates that k = n. The smallest decay rate is therefore
k = 1.

We conclude that for profiles with no wall slip the decay is much slower when
the disturbance has a small time-dependence, and the steady, inviscid results are
misleading. For flows with wall slip, however, the inviscid analysis should apply.

4.2. Curved pipes

In this section we will examine the decay rate of disturbances to rotational inviscid
flows in curved pipes. The results may also apply to Euler flows with slow downstream
development, e.g. Sobey (1976). As discussed above, we adopt high-Dean-number flow
as the base state. For a circular cross-section we make the Dean approximation of
small curvature, while the curvature is arbitrary for a rectangular pipe.

The background flow for the circular pipe has been the subject of much discussion.
Experimental results (for example, those by Agrawal et al. 1978) have agreed well with
numerical computations, notably those by Collins & Dennis (1975). Attempts have
also been made, most recently by Dennis & Riley (1991), to describe the asymptotic
structure in the high-Dean-number limit. These have not been completely successful
however, owing to difficulties encountered at the inner wall. Even so, the favourable
agreement between experiment and numerical computation is encouraging, and we
anticipate that our results would be relevant to flows at large, but finite, Dean
numbers.

We fix coordinates as shown in figure 8, with θ measuring the angle about the
z-axis, and with local polars ρ and η denoting radial distance within the cross-section
and the local polar angle respectively. The pipe curvature parameter is defined to
be δ = a/b, where a is the radius of the cross-section, and b the radius of the pipe
centreline.

All lengths are referred to the pipe radius a. The fluid velocity is written as
(u, w, v) = νa−1(u∗, δ−1/2w∗, v∗), in (ρ, θ, η), where ν is the kinematic viscosity of the
fluid. Arclength s∗ along the centreline satisfies as∗ = bθ. Asterisks are used here to
denote dimensionless variables. In order that s∗ derivatives should be retained in the
equations we scale arclength as s∗ = δ−1/2s, where s is of order unity. A pressure
gradient −G is imposed in the θ-direction to drive the main flow. The pressure is
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non-dimensionalized as p = ρdν
2p∗/a2, for constant fluid density ρd. All asterisks will

henceforth be dropped to avoid cluttering.
The steady flow is governed by the incompressible Navier–Stokes equations, which

in the current coordinate system take the form (when δ is small)

uuρ + vuη/ρ+ wus − v2/ρ− cos η w2 = −pρ + viscous, (4.3a)

uvρ + vvη/ρ+ wvs + uv/ρ+ sin η w2 = −pη/ρ+ viscous, (4.3b)

uwρ + vwη/ρ+ wws = D − δps + viscous, (4.3c)

uρ + u/ρ+ vη/ρ+ ws = 0. (4.3d)

Here the Dean number is defined as D = Ga3δ1/2/(ρdν
2), assumed large. For D � 1 the

flow deviates slightly from Poiseuille (Dean 1927, 1928). Except inside the boundary
layer at the pipe wall, the viscous terms are all small for D � 1, and since we intend
to concentrate on the inviscid part of the flow, they have not been detailed here. They
may be found in Stewartson et al. (1980) for example.

Let ε � D1/3, where ε is now an arbitrary small parameter, and D is large but
finite. Taking the large-Dean-number asymptotic structure proposed by Dennis &
Riley (1991) as the basis for our perturbation, we admit disturbances to the flow in
the form (for s > 0)

w = D2/3W0(ρ, η) + D1/3W1(ρ, η) + · · ·+ ε exp(ks)w1(ρ, η) + · · · , (4.4a)

u = D1/3U0(ρ, η) + · · ·+ ε exp(ks)u1(ρ, η) + · · · , (4.4b)

v = D1/3V0(ρ, η) + · · ·+ ε exp(ks)v1(ρ, η) + · · · , (4.4c)

p = D4/3P0(ρ, η) + · · ·+ D2/3δ−1ε exp(ks)p1(ρ, η) + · · · , (4.4d)

where the eigenvalue k is to be determined. In general it will be complex. The fully
developed background flow U = D2/3(0,W0, 0)+D1/3(U0,W1, V0)+· · · is that computed
numerically, for large finite D, by Collins & Dennis (1975) and other authors. It
takes the general form W0(ρ cos η) = W0(r − b), and ψ = ρ sin η/W ′

0(ρ cos η) where
U0 = ρ−1∂ψ/∂η, V0 = −∂ψ/∂ρ. The exact form of W0 is decided by the solution
of the boundary layer at the wall. Collins & Dennis found it numerically (see their
figure 7), and their calculations agree very favourably with the experimental results of
Agrawal et al. (1978). It is approximately linear in the core, increasing monotonically
with r.

The perturbed equations in the core are

ku1 − 2 cos η w1 = −p1ρ/W0, (4.5a)

kv1 + 2 sin η w1 = −p1η/(ρW0), (4.5b)

u1W0ρ + v1W0η/ρ+ kW0w1 = −kp1, (4.5c)

u1ρ + u1/ρ+ v1η/ρ+ kw1 = 0. (4.5d)

Note that if we change the sign of k, a sign change in w1 and p1 leaves these equations
unaltered. So the eigenvalue can take either sign in what follows, with the appropriate
sign changes in the eigenfunctions. Equations (4.5) also apply to perturbations of a
general slowly developing inviscid flow W0(r; s, t).

We believe that the correct boundary condition is that of no flow into the boundary
layer, namely

u1(1, η) = 0. (4.6)
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Otherwise, if u1(1, η) 6= 0, mass continuity in the boundary layer would require w1 to
be singular at the wall, an eventuality which (4.5) does not permit since, unlike for
Poiseuille flow, W0 is non-zero on the wall. Note that the background flow itself does
allow a non-vanishing radial velocity at the wall since the downpipe component is an
order of magnitude larger, and thus no imbalance in mass transport is encountered.

The velocities may be eliminated from the perturbation system (4.5) to reduce them
to a single relation for the pressure p1 (compare equation (4.2)). However, the equation
for p1 so produced, with its concomitant boundary condition, is somewhat unwieldy
and instead we preferred to keep the equations in the given form. The individual
components were analysed spectrally in η, with finite differences employed in ρ. Thus

(w1, u1, v1, p1) =

M∑
m=−M

(ŵm, ûm,−iv̂m, p̂m) eimη,

where, due to symmetry, ŵm = ŵ−m, ûm = û−m, v̂m = −v̂−m, and p̂m = p̂−m for
m = 1, . . . ,M. A similar decomposition is used for the background flow W (ρ cos η).
The sine and cosine terms in (4.5a) and (4.5b) provoke interaction between the modes,
and so each eigenvalue k is determined by the whole truncated spectrum. Equations
(4.5) are rearranged into the matrix form Au = ku, where u is the vector of velocity
components for each mode at every grid point. This sparse system is then solved for
the eigenvalues k using the Nag routine F02BCF.

Since the function W0 is more or less linear in ρ, rather than recompute the
background flow we approximated it as

W0 = 1 + Bρ cos η,

where B is a constant. Only one free constant is required since (4.5) are invariant
under the transformation (W0, p1) 7→ c(W0, p1) for constant c.

The resulting smallest positive eigenvalues k are plotted against B in figure 9. When
B = 1, W0 develops a zero at ρ = 1 when η = π, and the nature of the boundary
condition (4.6) is called into question since now the possibility of singular behaviour
of u1 arises at the wall. However, this is of secondary interest since, from Collins
& Dennis’ graph, we estimate B ≈ 0.72. For this the smallest positive eigenvalue is
k = 2.02. The corresponding eigenfunctions are plotted in figure 10. It shows contours
of downpipe perturbation w1 and pressure perturbation p1 in the cross-section, and
also a velocity vector plot of the cross-sectional flow (u1, v1).

4.2.1. Inertial waves

For any 0 < B < 1 there appear to exist infinitely many standing inertial waves
corresponding to discrete values of k2 < 0. For B = 0 only positive values of k2

are found. If, using our estimate from Collins & Dennis, we take B = 0.72, we find,
for example, k = 1.38i. Figure 11 shows contours of w1, p1 and a vector plot of the
cross-sectional flow for this value. Further evidence for the existence of these waves
was obtained by considering perturbations to Dean flow in part of a rectangular
torus (see § 4.2.2). We can show that they are consistent with the viscous wall layer
described in Dennis & Riley (1991), at least near the outer bend. The asymptotic
behaviour as D → ∞ near the inner bend is still not fully resolved, even for the base
flow.

4.2.2. Varying the curvature for a rectangular torus

So far we have kept the pipe curvature fixed (and small). We now investigate decay
rates in pipes of differing uniform curvature. We will keep the geometry simple by
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Figure 9. Smallest positive eigenvalues k versus background flow parameter B.
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Figure 10. B = 0.72, k = 2.02: Contours of (a) downpipe perturbation w1(ρ, η) and (b) pressure
perturbation p1(ρ, η) in the cross-section. (c) Vector plot of (u1, v1), the flow in the cross-section.
Solid/dotted lines indicate positive/negative contours.

(a) (b) (c)

Figure 11. Inertial wave with k = 1.38i. B = 0.72: contours of (a) downpipe perturbation w1(ρ, η)
and (b) pressure perturbation p1(ρ, η) in the cross-section. (c) Vector plot of (u1, v1), the flow in the
cross-section. Solid/dotted lines indicate positive/negative contours.

considering the perturbed flow in a rectangular torus. The background flow has been
studied in detail by Smith (1976a). We will assume that the boundary layers remain
attached to the walls.

The cross-section is defined to be z = 0, z0, and r = b ± a, with (u, w, v) denoting
speeds in the (r, θ, z) directions respectively. We permit only steady perturbations to
the main flow. Following (4.4) we write w = D2/3W0(r) + · · ·+ ε exp(kθ)w̃, and so on,
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Figure 12. (a) Plot of smallest real k (plotted as k̄r = kr/b) and largest imaginary k (plotted as
ki/8 for convenience) against rectangular curvature ∆ when m = 1 for fixed 2a = 1, z0 = π, γ = 0.5.

to produce the following set of disturbance equations in the inviscid core:

kW0u1/r − 2W0w1/r = −p1r, (4.7a)

kW0w1/r +W0u1/r +W0ru1 = −kp1/r, (4.7b)

kW0v1/r = mπp1/z0, (4.7c)

u1r + u1/r + kw1/r + mπv1/z0 = 0, (4.7d)

where we have taken (ũ, w̃, p̃) = (u1, w1, p1) cos(mπz/z0), and ṽ = v1 sin(mπz/z0) for
integer m to satisfy the solid boundary condition at z = 0, z0. The background flow
function is taken to be of the form W0 = 1 + γ(r− b+ a) for constant γ. We calculate
eigenvalues k for different uniform curvatures ∆ = 2a/b. Since higher modes provide
qualitatively similar results, we will take m = 1.

We fix 2a = 1, z0 = π and γ = 0.5. The curvature ∆ is then allowed to vary.
For any fixed ∆ we find both real (±kr) and imaginary (±iki) eigenvalues, but none
which are complex. There are finitely many imaginary eigenvalues. The smallest kr
and the largest ki are plotted in figure 12. The largest ki increases indefinitely as
∆ approaches zero. This lends some credence to the suggestion in § 4.2.1, for the
circular torus, that in the Dean limit of zero curvature there is an infinite number of
imaginary eigenvalues. We are primarily interested in the perturbation decay rates,
which correspond to the real eigenvalues divided by the radius of the centreline.
We write k̄r = kr/b. As the curvature tends to zero, with a fixed, we find that k̄r
approaches unity from below. This can readily be seen by taking the appropriate limit
in the equations. These results broadly support those found for the circular torus in
the limit of zero curvature (δ = 0). Furthermore k̄r steadily decreases with increasing
∆, suggesting that a more rapid decay rate would also be found for the circular torus
if δ were positive.

In reality we know that γ > 0 for the background flow. However, if we allow γ < 0
we find that, as ∆ → 0 with a fixed, all of the eigenvalues k2 eventually become
positive, and in the limit it seems that no inertial waves exist for the rectangular case.
This remark is supported by a calculation for the circular torus (at zero curvature)
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with B = −0.72. In this case it is also found that all k2 > 0 and so no inertial waves
are present.

4.3. Summary of the rotational results

In this section we have investigated how the introduction of vorticity affects the
decay rates in pipe flows. We looked at perturbations to unidirectional flows in a
straight pipe at high Reynolds number and to flow in a curved pipe at high Dean
number. In both cases the background flows are composed of an inviscid rotational
core with an attached boundary layer at the wall. Helical pipes were not considered.
Our conclusions are as follows.

For the straight pipe at high Reynolds number:
(a) in the absence of wall slip, unsteady disturbances of very small frequency decay

the slowest;
(b) with wall slip, steady perturbations decay more slowly the greater the vorticity.
For the curved pipe at high Dean number:
(a) increasing the curvature decreases the decay rate;
(b) for arbitrary curvature inertial waves can exist, presumably decaying on a much

longer viscous lengthscale. However, as these waves do not grow in amplitude either
up- or downstream, they do not affect the region of validity of the idealized flow
which is being perturbed.

5. Overall summary and discussion
Given arbitrary steady inlet conditions, flow in pipes with suitable geometries

requires certain entry lengths before a developed inviscid state can be reached,
although as we have seen, this need not occur for rotational flows. Our aim here has
been to quantify these distances by analysing the rate at which disturbances die out
before the geometrically symmetric state is attained. We have calculated such decay
rates for potential flow in a straight pipe, part of a torus of general uniform curvature,
and a helical pipe of arbitrary curvature and pitch. In the limits of zero and infinite
pitch the latter corresponds to a straight and toroidal pipe respectively. We have also
computed decay rates for rotational flow in a straight pipe at large Reynolds number,
and for a curved pipe at large Dean number. The potential results are applicable
to Womersley-type flows, when the driving pressure gradient is fluctuating rapidly in
time. They can also be applied to developing flows, assuming that the inlet profile is
irrotational. For example our results might be used to model flow in the ascending
aorta, at least during part of the cardiac cycle, if the blood is ejected from the heart
without significant vorticity. The rotational decay rates are also informative since
fully developed profiles are often used as entry conditions in CFD simulations with
realistic arterial geometries when they may in fact be inappropriate. Truly viscous
perturbations to otherwise fully developed profiles require long distances in which to
decay. This is due to the slow growth of the boundary layers, which typically evolve on
a lengthscale of the order of the Reynolds number. Inviscid, irrotational disturbances
such as those studied in § 3 decay much more rapidly down-stream, usually within
a few pipe diameters. The same is true for the decaying modes in rotational flows
considered in § 4, although waves may also exist in that case. An important viscous
effect is the possible separation of wall layers, which can occur on an O(1) lengthscale.
However, as illustrated below, this often takes place much beyond the inviscid flow
establishment.

We now summarize the general conclusions of this paper. The decay rates we have
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Radius of curvature b 1.0 1.5 2.0 2.5 ∞
Potential 0.936 0.973 0.985 0.991 1
Rotational 0.700 0.855 0.911 0.938 1

Table 1. Lowest decay rate κ/b in the rectangular torus r = b± 0.5, z = 0, π, for various b.

calculated were inviscid, even when fully developed viscous profiles were considered.
The potential flow results indicate that in most cases the first non-symmetric mode
is the most persistent. The corresponding eigenfunctions have a characteristic +/−
structure, with a dividing line on which the downpipe velocity is zero. Disturbances
decay fastest in a perfectly straight pipe and slowest in a torus, with those in a helical
pipe somewhere in between.

For steady disturbances to Poiseuille flow in a straight circular pipe, the axisymmet-
ric mode is the most resilient. However, in this case slightly unsteady non-symmetric
modes can decay more slowly, in line with the results of Smith (1979). If these modes
are taken into account, the core flows with slip are established more quickly than
those without.

For the curved pipe at high Dean number, the notion of an inviscid decay rate
was clouded somewhat by the presence of standing inertial waves of fixed amplitude.
A finite number of these waves exist for non-zero curvature, but in the Dean limit
of zero curvature there are apparently infinitely many. If present, these waves are
presumably eventually damped out by viscosity. Alternatively, they could be excluded
mathematically by a suitable downstream condition, but as they do not influence
our conclusions greatly, and reflect a genuine physical tendency of Euler flows, we
have included them. They should not be confused with the large-amplitude nonlinear
structures which may evolve from an arbitrary inlet.

Table 1 compares the θ decay rate per unit arclength κ/b of the final streamwise
mode in a rectangular torus of dimension r = b ± 0.5, z = 0, π for the potential
and rotational (high Dean number) cases. The potential decay rates were calculated
using (3.1). The rotational ones may be read off the graph in figure 12. In each case
disturbances decay more slowly in a torus than a straight pipe. This can be seen as a
direct result of the curvature, suggesting that disturbances to flows leaving a bend and
entering a straight section are likely to persist for a shorter distance than those coming
into a curved pipe. As b increases the potential decay rate approaches the straight
pipe limit (§ 3.1.1), while the rotational ones tend to the Dean limit of zero curvature
(§ 4.2.2). In both cases this limit is unity. The effect of torsion, for fixed curvature, on
irrotational decay rates in a circular pipe is seen from line (iii) in figure 5. The decay
rate per unit arclength k/hb decreases monotonically from its value in a straight pipe
(ε = 0) to that in a torus (ε → ∞). Thus, increasing the torsion means perturbations
decay more slowly. We have not assessed the effects of non-planarity for rotational
disturbances, although similar conclusions are to be expected.

Finally, we summarize the implications of this work for physiologists. First, if
circumstances are such that the flow can be considered rapidly oscillating or potential,
we have quantified the distance over which an arbitrary inlet flow will evolve to the
developed state. If however the flow has a rotational core, while we have calculated
the necessary inviscid entry length, it cannot be guaranteed that an arbitrary initial
flow will adjust to a state with the appropriate geometrical symmetry because of
inertial oscillations. Yet if observations do indicate that an appropriate Euler flow is
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nearly attained at some point in the artery, then we have found the extent of validity
of this flow. Curiously, a smaller decay rate would then indicate a larger region of
ideal flow.

If a symmetric state is indeed established, the rotational and irrotational results
are qualitatively similar. The introduction of curvature (and for the potential case
non-planarity) into the pipe geometry tends to lower the rate at which disturbances
to the background flow decay. Thus the introduction of vorticity does not alter the
general effects of changes in curvature. The persistence of flow perturbations when
curvature is non-zero might be regarded as beneficial from a physiological standpoint,
since prolonged swirl will promote more efficient cleaning of the arteries.

Using this work, we can identify regions of the arterial tree in which idealized
flow models might be applicable. For example, the human aortic arch has a typical
diameter of 1.25 cm and curvature radius 3.125 cm, and the inflow from the heart is
more or less irrotational during systole. The distance to boundary layer separation
at the inner wall is 5.56 cm (Riley 1998), while our calculations show that input
disturbances halve in magnitude every 0.63 cm. There is thus sufficient distance for
the flow to develop. However, our results also show that at other places in the
arterial tree there is unfortunately little a priori justification for assuming idealized
flow, contrary to popular practice. Analytical or numerical simulations with idealized
inflow should thus be treated with caution.

We gratefully acknowledge the support of The Wellcome Trust in performing this
work.

Appendix
In this Appendix we fill in a few of the missing details from the beginning of
§ 3.3.2. The remainder can be found in Zabielski & Mestel (1998a , referred to herein
as ZM). The pipe centreline is the helix with tangent vector Hb = H |r=b. Local polar
coordinates (ρ, η) are fixed with origin on the centreline in a plane normal to Hb so
that the pipe surface is ρ = 1. It can then be shown that

r2 = (b+ ρ cos η)2 + ρ2 sin2 η/h2
b, (A 1)

φ = tan−1

{
ρ sin η

hb(b+ ρ cos η)

}
+ ε2bρ sin η/hb. (A 2)

Recall that h(r) = (1 + ε2r2)1/2, and hb = h(b). As in ZM we construct the orthogonal
vector base (eρ, eη,H) wherein we make the definition eρ = ∇ρ, which leads to
eη = hH × eρ.

For non-helically symmetric functions it may be shown that

∇ = eρ(∂ρ + ερφ∂z) + eη

(
h

rJ
∂η +

εr

h
ρr∂z

)
+H∂z, (A 3)

where ∂z represents ∂/∂z for example. The Jacobian J = |∂(r, φ)/∂(ρ, η)|, given
explicitly in ZM. The coefficients S and T in (3.9) are defined as

S = ρrr + h2ρφφ/r
2 + ρr/r,

T = ηrr + h2ηφφ/r
2 + ηr/r.

The forms of ρr , ηr etc. may be obtained from ZM, although we here note a misprint
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in their given form of ηφφ. The final term should read

−∂J/∂φ
2rJ2

(2 cos η(b+ ρ cos η) + 2ρ sin2 η/h2
b).
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